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Abstract

We develop a hydrodynamic description of the classical Calogero–Sutherland
liquid: a Calogero–Sutherland model with an infinite number of particles and a
non-vanishing density of particles. The hydrodynamic equations, being written
for the density and velocity fields of the liquid, are shown to be a bidirectional
analog of the Benjamin–Ono equation. The latter is known to describe internal
waves of deep stratified fluids. We show that the bidirectional Benjamin–
Ono equation appears as a real reduction of the modified KP hierarchy. We
derive the chiral nonlinear equation which appears as a chiral reduction of
the bidirectional equation. The conventional Benjamin–Ono equation is a
degeneration of the chiral nonlinear equation at large density. We construct
multi-phase solutions of the bidirectional Benjamin–Ono equations and of the
chiral nonlinear equations.

PACS numbers: 02.30.Ik, 94.05.Fg, 02.00.00

1. Introduction

The Calogero–Sutherland model (CSM) [1, 2] describes particles moving on a circle and
interacting through an inverse sin-square potential. The Hamiltonian of the model reads

HCSM = 1

2

N∑
j=1

p2
j +

1

2

(
π

L

)2 N∑
j,k=1;j �=k

g2

sin2 π
L
(xj − xk)

, (1)

where xj are coordinates of N particles, pj are their momenta and g is the coupling constant.
We took the mass of the particles to be unity. The momenta pj and coordinates xj are
canonically conjugate variables.
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The model (classical and quantum) occupies an exceptional place in physics and
mathematics, and has been studied extensively. It is completely integrable. Its solutions
can be written down explicitly as finite dimensional determinants (for review see [3]).

In the limit of a large period L → ∞ the CSM degenerates to its rational version—
Calogero (aka Calogero–Moser) model (CM), where the pair–particle interaction is 1/x2.4

The CSM itself is a degeneration of the elliptic Calogero model, where the pair–particle
interaction is given by the Weierstrass ℘ function of the distance. In this paper, we discuss
the classical trigonometric model (1) commenting on the rational limit when appropriate.

We are interested in describing a Calogero–Sutherland liquid, i.e., the system (1) in a
thermodynamic limit when N → ∞ and L → ∞, while the average density N/L is kept
constant. We assume that the limit exists and that in this limit a microscopic density and
current fields

ρ(x, t) =
N∑

j=1

δ(x − xj (t)), (2)

j (x, t) =
N∑

j=1

pj (t)δ(x − xj (t)) (3)

are smooth single-valued real periodic functions with a period L equal to the period of the
potential5. In this case, the system will be described by hydrodynamic equations written on
the density field ρ(x, t) and the velocity field v(x, t). The velocity is defined as j = ρv.

The hydrodynamic approach is a powerful tool to study the evolution of smooth features
with typical size much larger than the inter-particle distance. Apart from application to the
CSM, the hydrodynamic equations obtained in this paper are interesting integrable equations.
We show that they are new real reductions of the modified Kadomtzev–Petviashvili equation
(MKP1).

In this paper we consider a classical system; however, the approach developed below
can be extended to the quantum case {pj , xk} = δjk → [pj , xk] = −ih̄δjk almost without
changes. For a brief description of the hydrodynamics of the quantum system see [4]. The
hydrodynamics of the quantum Calogero model has been studied previously [5, 6] in the
framework of the collective field theory and some of the results below can be obtained in a
classical limit (see [7]) of the quantum counterparts of [5, 6].

The outline of this paper is as follows. In section 2, we parameterize the particles of
the CSM as poles of auxiliary complex fields so that the motion of particles is encoded
by evolution equations for fields. In section 3, we derive a hydrodynamic limit of these
equations—continuity and Euler equations with a particular form of specific enthalpy. We
will refer to these equations as to the bidirectional Benjamin–Ono equation or 2BO. We present
the Hamiltonian form of 2BO in section 4. In section 5, we discuss the bilinear form of 2BO and
its relation to MKP1. In section 6, we obtain the chiral nonlinear equation (CNL)—the chiral
reduction of 2BO—and discuss some of its properties. In section 7, we construct multi-phase
and multi-soliton solutions of 2BO and CNL as a real reduction of MKP1. These solutions
correspond to collective excitations of the original many-body system. Some technical points
are relegated to the appendices.

4 In the rational case, one usually adds a harmonic potential, 1
2 ω2∑

i x2
i , to the Hamiltonian to prevent particles

from escaping. This addition does not destroy the integrability of the system [2].
5 It is likely that there are classes of solutions of the CSM, whose thermodynamic limit consists of a number of
interacting liquids. In this case the microscopic density give rises to a number of functions in the continuum—the
densities of the distinct interacting liquids. In this paper we consider a class of solutions which leads to a single liquid.
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2. Particles as poles of meromorphic functions

The equations of motion of the CSM are readily obtained from the Hamiltonian (1):

ẋj = pj , (4)

ṗj = −g2 ∂

∂xj

N∑
k=1(k �=j)

(
π

L
cot

π

L
(xj − xk)

)2

. (5)

We rewrite this system in an equivalent way as

i
ẇj

wj

= g

2

(
2π

L

)2
⎛
⎝ N∑

k=1

wj + uk

wj − uk

−
N∑

k=1(k �=j)

wj + wk

wj − wk

⎞
⎠ , j = 1, . . . , N, (6)

−i
u̇j

uj

= g

2

(
2π

L

)2
⎛
⎝ N∑

k=1

uj + wk

uj − wk

−
N∑

k=1(k �=j)

uj + uk

uj − uk

⎞
⎠ , j = 1, . . . , N, (7)

where wj(t) = ei 2π
L

xj (t) are complex coordinates lying on a unit circle, while uj (t) = ei 2π
L

yj (t)

are auxiliary coordinates. Indeed, differentiating (6) with respect to time and using (6) and (7)
to remove first derivatives in time one obtains equations equivalent to (4) and (5).

We note that while the coordinates xj are real, i.e., |wj | = 1, the auxiliary coordinates,
yj (t), are necessarily complex. Given initial data as real positions and velocities xj (0) and
ẋj (0), one can find complex yj from (6) and then initial complex velocities ẏj (0) from (7).
Once xj and ẋj are chosen to be real, they will stay real at later times, even though coordinates
yi are moving in a complex plane.

The coordinates wj(t) and uj (t) determine an evolution of two functions

u1(w) = g
π

L

N∑
j=1

w + wj

w − wj

= −ig
N∑

j=1

π

L
cot

π

L
(x − xj ), w = ei 2π

L
x, (8)

u0(w) = −g
π

L

N∑
j=1

w + uj

w − uj

= ig
N∑

j=1

π

L
cot

π

L
(x − yj ), w = ei 2π

L
x . (9)

The latter functions play a major role in our approach. These are rational functions of w

regular at infinity and having particle coordinates as simple poles with equal residues 2πg/L.
The condition that the coordinates of particles xj are real yields Schwarz reflection

condition for the function u1 with respect to the unit circle

u1(w) = −u1(1/w̄) or u1(x) = −u1(x̄), (10)

where the bar denotes complex conjugation. The values of u1(w) in the interior and exterior
of a unit circle are related by Schwarz reflection.

Comparing (6), (4) and (9) we note that while the function u1(w) encodes the positions
of particles wj , the function u0(w) encodes the momenta of particles as its values at particle
positions wj

pj = u0(wj ) + g
π

L

N∑
k=1(k �=j)

wj + wk

wj − wk

. (11)
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We note here that the positions of the particles fully determine the imaginary part of the field
u0 on a unit circle. Indeed, we have from (11)

Im u0(xj ) = g
∑
k �=j

π

L
cot

π

L
(xj − xk). (12)

We now introduce complex functions

u = u0 + u1, ũ = u0 − u1. (13)

One can show that they obey the equation

ut + ∂x

[
1

2
u2 + i

g

2
∂xũ

]
= 0. (14)

Indeed, substituting the pole ansatz (8) and (9) into (14) and comparing the residues at poles
wj and uj one arrives at (6) and (7).

Equation (14) connects two complex functions u0 and u1. The equation is equivalent to
the modified Kadomtzev–Petvisashvili equation (or simply MKP1). We will discuss its relation
to MKP1 in section 5.

However, being complemented by the Schwarz reflection condition (10), analyticity
requirements and an additional reality requirement it becomes an equation uniquely
determining u0 and u1 through their initial data.

The analyticity requirements read: u0(w) is analytic in a neighborhood of a unit circle
|w| = 1, while u1 is analytic inside |w| < 1 and outside |w| > 1 of the unit circle, approaching
a constant at w → ∞. An additional reality requirement is the relation between the imaginary
part of u0 on a unit circle and u1 stemming from condition (12). We formulate and discuss
these conditions in sections 3.3 and 5.

We will refer to equation (14) as the bidirectional Benjamin–Ono equation (2BO). It is
a bidirectional (having both right- and left-moving waves) generalization of the conventional
Benjamin–Ono equation (BO) arising in the hydrodynamics of stratified fluids [8]. We discuss
its hydrodynamic form in the following section.

The solution of (14) given by (8) and (9) is the CSM many-body system with a finite
number of particles (1). Other solutions describe CSM fluids. They are the central issue of
this paper.

To conclude this section we make the following comment. The function u1 can be
expressed solely in terms of the microscopic density of particles (2) as

u1(w) = −πg

∮
dζ

2π iζ

ζ + w

ζ − w
ρ(ζ ). (15)

The integral in this formula goes over the unit circle ζ = exp
(
i 2π

L
x
)
. In the following, we will

denote for brevity ρ(ζ ) as ρ(x), when ζ lies on a unit circle ζ = ei 2π
L

x . The density itself can
be obtained as a difference of limiting values of the field u1 at the real x (on the unit circle).
The discontinuity of u1 on the unit circle gives a microscopic density (2) of particles

u1(x + i0) − u1(x − i0) = −2πgρ(x), Im x = 0, 0 < Re x < L. (16)

3. Hydrodynamics of Calogero–Sutherland liquid

3.1. Density and velocity

We assume that in the thermodynamic limit N,L → ∞, N/L = const the poles of the function
u1 are distributed along the real axis with a smooth density ρ(x) and consider a complex field

4
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u1(w) given by formula (15). Note that u1(w) defined by (15) is analytic everywhere outside
of the real axis of x (everywhere off the unit circle in the z-plane) approaching a constant
as z → ∞. It also satisfies the reality condition (10) (the density ρ(x) is real). In the
thermodynamic limit, the function u1 is not a rational function anymore. It is discontinuous
across the real axis with the discontinuity related to the density of particles by (16). The
value of the field u1(x) on a real axis (on a unit circle in the z-plane) depends on whether one
approaches the real axis from above or below (unit circle from the interior z → ei 2π

L
(x+i0) or

from the exterior z → ei 2π
L

(x−i0)). More explicitly, we have from (15)

u1(x ± i0) = πg(∓ρ + iρH ). (17)

The superscript H in the second term of (37) denotes the Hilbert transform and is defined as
(see appendix A for definitions and some properties of the Hilbert transform)

f H (x) = −
∫ L

0

dy

L
f (y) cot

π

L
(y − x). (18)

We also assume that in N → ∞ limit, the complex field u0(w) remains analytic in the
vicinity of the real axis in the x-plane (i.e., in the vicinity of a unit circle in the z-plane).

The 2BO (14) does not explicitly depend on the number of particles N. It holds also in the
thermodynamic limit N,L → ∞, N/L = const; however, solutions describing a liquid are
no longer rational functions.

We can use 2BO to define velocity through the continuity equation

ρt + ∂x(ρv) = 0. (19)

The discontinuity of the complex field u(x) (13) across the real axis as well as a
discontinuity of the field u1 (see (16)) is the density

u(x + i0) − u(x − i0) = u1(x + i0) − u1(x − i0) = −2πgρ(x). (20)

Differentiating (20) with respect to time and using 2BO (14) we obtain the continuity equation
and identify the velocity field v(x) as

v(x) = u0(x) + 1
2 (u1(x + i0) + u1(x − i0)) − ig∂x log

√
ρ(x)

= u0(x) + ig(πρH (x) − ∂x log
√

ρ(x)) (21)

or

u0(x) = v − ig(πρH − ∂x log
√

ρ). (22)

Since v(x) is a real field, (22) provides a reality condition analogous to (12). Indeed, one can
see from (22) that

Im u0(x) = −g(πρH − ∂x log
√

ρ), (23)

i.e., the imaginary part of u0(x) is completely determined by the density of particles or
equivalently by the field u1. It is also convenient to have an expression for u(x) on a real axis

u(x ± i0) = v + g(∓πρ + i∂x log
√

ρ). (24)

It has the same discontinuity across the real axis as u1(x).

5
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3.2. Hydrodynamic form of 2BO

Now we are ready to cast equation (14) into a hydrodynamic form.
Taking the real part of 2BO (14) on the real axis and using identifications (17) and (22)

and the continuity equation, (19), after some algebra we arrive at the Euler equation

vt + ∂x

(
v2

2
+ w(ρ)

)
= 0, (25)

with specific (per particle) enthalpy or chemical potential6 given by

w(ρ) = 1

2
(πgρ)2 − g2

2

1√
ρ

∂2
x

√
ρ + πg2ρH

x . (26)

Equations (19) and (25) are the continuity and Euler7 equations of the classical Calogero–
Sutherland model. They are the classical analogs of quantum hydrodynamic equations that
have been obtained for the quantum CSM in [5, 6, 9] first using a collective field theory
approach [10–12] and later by the pole ansatz similar to that used above [4]. It was noted
in [12] and then in [7] that the system (19), (25) and (26) has a lot of similarities with the
classical Benjamin–Ono equation [13]. The similarities and differences with the Benjamin–
Ono equation are discussed below. We will refer to (19), (25) and (26) as to a hydrodynamic
form of the bidirectional Benjamin–Ono equation (2BO).

3.3. Bidirectional Benjamin–Ono equation (2BO)

Let us now summarize the 2BO equation:

ut + ∂x

[
1

2
u2 + i

g

2
∂xũ

]
= 0, (27)

u = u0 + u1, ũ = u0 − u1. (28)

The functions u0 and u1 are subject to analyticity conditions

u1(x) analytic for Im(x) �= 0, (29)

u0(x) analytic for |Im(x)| < ε for some ε > 0, (30)

and to reality conditions

u1(x) = −u1(x̄). (31)

In addition, the fact that equation (27) holds in the upper half-plane and in the lower half-plane
(inside and outside of the unit circle) yields the condition

Im[u(x ± i0)] = g

2
∂x log Re[u1(x ± i0)]. (32)

It also follows from (17), (23) and (24). Condition (32) looks more ‘natural’ in the bilinear
formulation (see, equation (55)).

These reality and analyticity conditions reduce two complex fields u0 and u1 to two
real fields—density ρ(x) and velocity v(x) as (17) and (22). Then, a complex equation (14)

6 The specific enthalpy and chemical potential are identical at zero temperature.
7 Equation (25) has a form of an Euler equation for an isentropic flow. Because of the long-range character
of interactions the enthalpy cannot be replaced by the conventional pressure term ∂xw(ρ) → ρ−1∂x(p(ρ))—the
standard form of the Euler equation.

6
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defined in both half-planes immediately yields the hydrodynamic equations (19), (25) and (26).
Inversely, knowing real periodic fields ρ(x) and v(x) one can find fields u0, u1 everywhere in
a complex x-plane.

Mode expansion. The analyticity and reality conditions can be recast in the language of mode
expansions. It follows from (15) that

u1(w) =
{−πg

(
ρ0 + 2

∑∞
n=1 ρnw

n
)
, |w| < 1,

πg
(
ρ0 + 2

∑∞
n=1 ρ

†
nw

−n
)
, |w| > 1,

(33)

where ρn = ρ
†
−n = ∫ L

0
dx
L

ρ(x) e−i 2πn
L

x are the Fourier components of the density.
The values of the field u1(w) in the upper and lower half-planes are then automatically

related by Schwarz reflection (10).
Conversely, the field u0(x) being analytic in a strip around the unit circle is represented

by Laurent series

u0(w) = V0 +
∞∑

n=1

(anw
n + bnw

−n), |Im log w| < 2πε/L. (34)

The 2BO equation remains intact in the case of rational degeneration. Rational
degeneration of formulae of section 2 is obtained by a direct expansion in 1/L. In this
limit, fields are defined microscopically as u1(x) = −ig

∑
j

1
x−xj

and u0(x) = ig
∑

j
1

x−yj
.

4. Hamiltonian form of 2BO

The 2BO is a Hamiltonian equation. Let us start with its Hamiltonian formulation in the
hydrodynamic form ρt = {H, ρ} , vt = {H, v} with the canonical Poisson bracket of density
and velocity fields

{ρ(x), v(y)} = δ′(x − y). (35)

Equations (19), (25) and (26) follow from

H =
∫

dx

(
ρv2

2
+ ρε(ρ)

)
, (36)

ε(ρ) = g2

2
(πρH − ∂x log

√
ρ)2. (37)

Here the ‘internal energy’ (37) and the enthalpy (26) are related by a general formula
w(ρ) = δ

δρ(x)

∫
dx ρε(ρ).

For references, we will give alternative expressions for the Hamiltonian. Let 
 = √
ρ eiϑ

where v = g∂xϑ then

H = g2

2

∫
|∂x
 − πρH 
|2 dx, (38)

where ρ = |
|2. The Poisson brackets for 
(x) are canonical: {
(x),
(y)} = 0, and
{
(x),
�(y)} = i

g
δ(x − y). The equations of motion for 
 and 
� are

i

g
∂t
 =

[
−1

2
∂2
x +

π2

2
|
|4 + π(|
|2)Hx

]

 (39)

7
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and its complex conjugate. A simple change of a dependent variable  = 
 eiπ
∫ x dx ′ |
(x ′)|2

leads to

i

g
∂t =

[
−1

2
∂2
x + i2π(||2)+

x

]
, (40)

where f + denotes the function analytical in the upper half-plane of x defined as f + = f −if H

2 .
One can recognize in (40) the intermediate nonlinear Schrödinger equation (INLS) which
appeared in [14] as an evolution of the modulated internal wave in a deep stratified fluid.
Therefore, one can alternatively think of 2BO as the hydrodynamic form of (40) identifying
hydrodynamic fields ρ and v to be

 = √
ρ exp

{
i

g

∫ x

dx ′(v + πgρ)

}
(41)

or with the field u(x) from (24) as

ig∂x log � = u(x − i0). (42)

The Hamiltonian (36) or (38) can be rewritten in terms of  as

H = g2

2

∫
|∂x − i2πρ+|2 dx, (43)

where ρ = ||2. However, the Poisson brackets for  are no longer canonical8.
2BO is an integrable system. It has infinitely many integrals of motion. The first three

of them follow from global symmetries. They are conventional the number of particles
N = ∫ dx ρ, the total momentum P = ∫ dx ρv and the total energy H = ∫ dx

(
ρv2

2 + ρε(ρ)
)
.

They are conveniently written in terms of the fields u and ũ as

I1 = N = 1

2πg

∮
C

dx u, (44)

I2 = P = 1

2πg

∮
C

dx
1

2
u2, (45)

I3 = 2H = 1

2πg

∮
C

dx

[
1

3
u3 + i

g

2
u∂xũ

]
, (46)

where the integral is taken over both sides of the unit circle. (‘double’ contour C shown in
figure 1). For more details on conserved integrals see appendix B.

The Poisson bracket for the fields u0(w) and u1(w) can be easily obtained from (17), (22)
and (35) by analytic continuation. We find that {u0(w), u0(w

′)} = {u1(w), u1(w
′)} = 0 and

{u0(w), u1(w
′)} = ig

(
2π

L

)2
ww′

(w − w′)2
= ig∂x

π

L
cot

π

L
(x − y). (47)

5. Bilinearization and relation to MKP1 equation

The equations described in the previous section, their integrable structures and their connection
to integrable hierarchies are the most transparent in the bilinear form.

8 Simple calculation using (35) gives {(x), (y)} = π
g
(x)(y) sgn(x − y), {(x), �(y)} = i

g
δ(x − y) −

π
g
(x)�(y) sgn(x − y) and similar expressions for complex conjugated fields. One should think of 
(x) as a

canonical bosonic field while of (x) as a classical analog of a field with fractional statistics.

8
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τ−1

τ+1

R

L

τ0

Figure 1. Contour C surrounding the unit circle is shown together with our conventions in defining
right and left fields.

Let us introduce tau-functions τ0 and τ1 as

u0 = ig∂x log τ0, u1 = −ig∂x log τ1. (48)

It can be easily checked that the 2BO (14) can be rewritten as an elegant bilinear Hirota
equation on τ -functions:(

iDt +
g

2
D2

x

)
τ1 · τ0 = 0. (49)

Here we used the Hirota derivative symbols defined as

Dn
xf (x) · g(x) ≡ lim

y→x
(∂x − ∂y)

nf (x)g(y). (50)

For example,

Dtf · g = (∂tf )g − f (∂tg),

D2
xf · g = (∂2

xf
)
g − 2(∂xf )(∂xg) + f

(
∂2
xg
)
.

(51)

We emphasize that the bilinear equation holds on both sides of the unit circle. Introducing
notations

τ±1 = τ1(x ± i0) (52)

we can rewrite the equation as(
iDt +

g

2
D2

x

)
τ+1 · τ0 = 0,(

iDt +
g

2
D2

x

)
τ−1 · τ0=

(
−iDt +

g

2
D2

x

)
τ0 · τ−1 = 0.

(53)

Equation (49) is the modified Kadomtsev–Petviashvili equation (MKP1). MKP1 contains
two independent functions τ1 and τ0 and is formally not closed. The analyticity and reality
conditions (29)–(32), stemming from the fact that all solutions are determined by two real
functions ρ(x, t) and v(x, t), close the equation. Under these conditions the equations can be
seen as a real reduction of MKP1. Let us formulate these conditions in terms of tau-functions.

9
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The first requirement is that τ±1 is analytic and does not have zeros for Im x > 0 (<0)

after analytic continuation. Also τ0 should be analytic and should not have zeros in the vicinity
of the real axis, i.e., for |Im x| < ε for some ε > 0.

The second requirement is that τ±1 should be related by Schwarz reflection (10). In terms
of tau-functions it becomes on the unit circle (for real x)

τ−1 = τ+1 ei�(t), (54)

where a phase �(t) can be any time-dependent function.
The third requirement is related to the fact that Im u0 is a function of density only and,

therefore, can be expressed in terms of u1 as can be easily seen from (17) and (22). This
condition (32) can be written in a bilinear form as follows:

iDxτ+1 · τ+1 = Aτ0τ0. (55)

The multiplicative constant A on the rhs of (55) fixes the relative normalization of τ0 and τ1

and is arbitrary. Condition (55) can be thought of as a part of Bäcklund transformation from
the solution (τ+1, τ0) to the solution (τ−1, τ0) of MKP1 (53) [15].

Finally, we note that the pole ansatz solution (8) and (9) corresponds to the polynomial
form of tau-functions with zeros at wj and uj :

τ1(w, t) = w−N/2
N∏

j=1

(w − wj(t)), (56)

τ0(w, t) = w−N/2
N∏

j=1

(w − uj (t)). (57)

6. Chiral fields and chiral reduction

6.1. Chiral fields and currents

The 2BO equation can be conveniently expressed through yet another right-handed and left-
handed chiral field

JR,L = v ± g[πρ + ∂x(log
√

ρ)H ]. (58)

These fields are real9. In terms of them, the 2BO equation (14) reads

∂tJR,L + ∂x

(
J 2

R,L

2
± g

2
∂xJ

H
R,L

)
∓ g∂x[JR,L∂x(log

√
ρ)H − (JR,L∂x log

√
ρ)H ] = 0. (59)

Here ρ is a function of JR and JL implicitly given by (58). The Hamiltonian acquires a
Sugawara-like form

H = 1

8

∫
dx ρ
[
(JR + JL)2 +

(
JH

R − JH
L

)2]
(60)

with Poisson brackets

{JR,L(x), JR,L(y)} = ±2πg∂xδ(x − y) ± g

2L
∂x∂y

[(
1

ρ(x)
+

1

ρ(y)

)
cot

π

L
(x − y)

]
, (61)

9 JR,L can be expressed solely in terms of u0 field. It is easy to check that (58) is equivalent to JR,L = Re
(
u0 ∓ iuH

0

)
.
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{JR(x), JL(y)} = − g

2L
∂x∂y

[(
1

ρ(x)
− 1

ρ(y)

)
cot

π

L
(x − y)

]
. (62)

We note that Poisson brackets become canonical and left and right fields decouple in the limit
of a constant density.

6.2. Chiral reduction

We first note that the right and left currents JR,L are not separated in equation (59). The
equations for JR and JL are coupled through the density ρ which should be found in terms of
JR,L from (58). However, it is possible to find the chiral reductions of 2BO assuming that one
of the currents is constant. We explain this reduction in some detail in this section.

The 2BO (14) or (59) admits an additional reduction to a chiral sector [16] where one of
the chiral currents (58), say left current, is a constant JL(x, t) = v0 − πgρ0. We can always
choose a coordinate system moving with velocity v0. This is equivalent to setting the zero
mode of velocity to zero v0 = 0. The condition JL = −πgρ0 becomes

v = g[π(ρ − ρ0) + ∂x(log
√

ρ)H ]. (63)

Then the currents can be expressed in terms of the density field only

JL(x) = J0, JR(x) = J0 + J (x), (64)

J0 = πgρ0, J (x) = 2g[π(ρ − ρ0) + ∂x(log
√

ρ)H ]. (65)

It follows from equation (59) that once the current JL is chosen to be constant JL(x) = J0

at t = 0, it remains constant at any later time. Condition (63), therefore, is compatible with
2BO. Then the density ρ(x, t) evolves according to the continuity equation (19) with velocity
determined by the density according to (63). We obtain an important equation (written in the
coordinate system moving with velocity v0)

ρt + g[ρ(π(ρ − ρ0) + ∂x(log
√

ρ)H )]x = 0. (66)

We refer to this equation as the chiral nonlinear equation (CNL). A substitution of the chiral
constraint (64) to (60) gives the Hamiltonian for CNL

H = 1

8

∫
dx ρ[J 2 + (JH )2] (67)

with Poisson brackets for J (x) following from (61). This equation constitutes one of the
major results of this paper.

CNL can be written in several useful forms. One of them is

ϕt + g

[
πρ0 (2eϕ − ϕ) +

1

2
ϕH

x

]
x

+
g

2
ϕxϕ

H
x = 0, (68)

where ρ(x) = ρ0 eϕ(x).

6.3. Holomorphic chiral field

Under the chiral condition (63) the field u0 becomes analytic inside the disk. Indeed, combining
(63) and (22) we obtain

u0(w) = 1

2

∮
dζ

2π iζ

ζ + w

ζ − w
J(ζ ), |w| < 1. (69)

In the chiral case, it has only non-negative powers of w in the expansion (34). Negative modes
vanish bn = 0. Conversely, the condition of u0 to be analytic inside the unit disk is equivalent
to JL = const.

11
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The current itself (64) is the boundary value of the field Re u0 harmonic inside the disk

J (x) = 2J0 + 2 Re u0 = 2J0 +
∑
n=1∞

(anw
n + ānw

−n). (70)

The fields u and ũ are in turn also analytic inside the disk. Let ϕ be a harmonic
function inside the disk with the boundary value log(ρ/ρ0). Then ϕ = φ(w) + φ(w), where
φ(w) = (log(ρ/ρ0))

+. Here f +(w) = 1
2

∫
ζ+w

ζ−w
f (ζ )

dζ

2πiζ
is a function analytic in the interior

of a unit circle the value of which on the boundary of the disk is (f (x)− if H (x))/2. It follows
from (24) and (63) that

u = −J0 + ig∂φ, |w| < 1, (71)

ũ = u + 4πgρ0 (eϕ)
+
, |w| < 1. (72)

Then 2BO (27) becomes an equation on an analytic function in the interior of a unit circle

φ̇ + i
g

2
[(∂φ)2 + ∂2φ] + πgρ0∂ (2eϕ − ϕ)

+ = 0. (73)

This is the ‘positive part’ of (68) which is a direct consequence of (66).
We remark here that the chiral equation (66) has a geometric interpretation as an evolution

equation describing the dynamics of a contour on a plane. Within this interpretation the term
∂x(log

√
ρ)H of (66) is the curvature of the contour (see appendix C).

6.4. Benjamin–Ono equation

Another form of the chiral equation (66) arises when one considers the fields u and ũ outside
the disk. There neither u nor ũ are analytic, but their boundary values are connected by the
Hilbert transform

u(x − i0) = −J0 + 2g[πρ + i∂x(log
√

ρ)+], (74)

ũ(x − i0) = −J0 − iuH (x − i0). (75)

The bidirectional equation (27) complemented by this condition becomes unidirectional
(chiral)

ut + ∂x

[
1

2
u2 +

g

2
∂xu

H

]
= 0. (76)

This is just another form of the chiral equation (66).
The chiral equation (76) has the form of the Benjamin–Ono equation [13]. There are

noticeable differences, however. Contrary to the Benjamin–Ono equation, equation (76) is
written on a complex function, whose real and imaginary values at real x are related by
conditions (74) implementing the reality of the density:

Re u = −J0 + 2gπρ + g(∂x log
√

ρ)H , Im u = g∂x log
√

ρ. (77)

One understands this relation as a condition on the initial data. Once it is imposed by choosing
the initial data for the density ρ, the condition remains intact during the evolution.

However, in the case when the deviation of a density is small with respect to the average
density |ρ −ρ0| 	 ρ0, the imaginary part of u vanishes in the leading order of 1/ρ0 expansion

u ≈ J0 + 2πgϕ ≈ 2πg(ρ − ρ0) + J0,

and condition (77) becomes non-restrictive. In this limit, equation (76) becomes an equation
on a single real function. It is the conventional Benjamin–Ono equation. One can think of
CNL (66) as of finite amplitude extension of BO. Similarly, 2BO is an integrable bidirectional
finite amplitude extension of BO. It is interesting that there exists another bidirectional finite

12
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amplitude extension of BO—the Choi–Camassa equation [17]. However, it seems that the
latter is not integrable.

7. Multi-phase solution

In this section, we describe the most general finite dimensional solutions of 2BO. These are
multi-phase solutions and their degenerations—multi-soliton solutions. In the former case,
the τ -functions are polynomials of eikix , where ki is a finite set of parameters, the latter are just
polynomials of x. These solutions are given by determinants of finite dimensional matrices.
They appeared in the arXiv version of [18]. One can construct those solutions using the
transformation (41) of 2BO to INLS (40). For the latter multi-phase solutions were written
in [14] (see also [19, 20]). We use a different route in this section deriving multi-phase and
multi-soliton solutions as a real reduction of the corresponding solutions for MKP1.

7.1. Multi-phase and multi-soliton solutions of MKP1

We start from a general multi-phase solution of the MKP1 equation and then restrict it to the
2BO equation.

A general multi-phase solution of the MKP1 equation(
iDt +

g

2
D2

x

)
τ1 · τ0 = 0 (78)

is given by the following determinant formulae [22, 23],

τa = eiηa det

[
δjk + ca,j

eiθj

pj − qk

]
, a = 0, 1, (79)

c1,j

c0,j

= qj

pj

, (80)

where the phases are

gθj (x, t) = (qj − pj )(x − x0j − (K + v0)t) − q2
j − p2

j

2
t, (81)

gη0(x, t) = Kx − K2

2
t −
(

(v0 + K)x − (v0 + K)2

2
t

)
, (82)

gη1(x, t) = Kx − K2

2
t. (83)

This solution is characterized by an integer number N (the number of ‘phases’) and by 4N − 1
parameters pj , qj , c0,j , x0j and moduli K and v0. The solutions become single valued on a
unit circle if pj − qj are integers in units of g 2π

L
.

7.2. Multi-phase solution of 2BO

Without further restrictions the parameters entering (79)–(83) are general complex numbers.
Reality nature of the 2BO equation restricts them to be real.

The real moduli K and v0 are obviously zero modes of the fields u1 and u0 respectively,
and therefore, they are zero modes of the density ρ0 = 1

L

∫
ρ dx = −K/(πg) and velocity

1
L

∫
v dx = v0.

13



J. Phys. A: Math. Theor. 42 (2009) 135201 A G Abanov et al

7.2.1. Schwarz reflection condition. We have to restrict the coefficients ca,j , so that there
exists another solution τ−1, τ0 of equation (78) sharing the same τ0 with the solution (85) and
(86) and obeying the Schwarz reflection property (54).

The Galilean symmetry of equation (78) is here to help. If τa(x, t), a = 0, 1 give
a solution of (78) then the pair eiPax−iEat τa(x − gPat, t) is also a solution provided that
Ea+1 − Ea = 1

2 (Pa+1 − Pa)
2.

Being applied to the solution (79)–(83) the Galilean invariance can be utilized as follows.
We note from (81) that

θj (x − P t, t; {pj , qj }) = θj (x, t; {pj + P, qj + P }). (84)

Performing the Galilean boost to (79), multiplying both tau-functions by e−iPv0t and shifting
pj → pj − P, qj → qj − P we obtain that

τ−1 = eiθ1−iP(K+v0)t+ i
g
(Px− P 2

2 t) det

[
δjk + bj

eiθj

pj − qk

]
, (85)

bj

c0,j

= qj − P

pj − P
(86)

form a solution of (78) with the same τ0 (79).
Now we will show that for a particular choice of coefficients c1,j the Galilean boosted

solution (85) and (86) is a complex conjugate of τ+1 from (79). To show this we will employ
the determinant identity (D.7).10

We apply the determinant identity (D.7) to (85) and obtain

τ−1 = eiη1− i
g
P (K+v0)t+ i

g
(Px− P 2

2 t)

⎛
⎝∏

j

eiθj

√
bj

b̃j

⎞
⎠ det

[
δjk + b̃j

e−iθj

pj − qk

]
, (87)

where

b̃j bj = (pj − qj )
2
∏
k �=j

(pj − qk)(qj − pk)

(pj − pk)(qj − qk)
. (88)

The Schwarz reflection condition (54) τ−1 = τ+1 ei�(t) requires

b̃j = c1,j , (89)

gives a relation

P = −2K +
∑

j

(pj − qj ) (90)

and determines �(t) as

�(t) = 1

2g
t

⎡
⎣−P 2 + 2K2 + 4v0K +

N∑
j=1

(
p2

j − q2
j

)⎤⎦ . (91)

Finally, combining all relations (80), (86), (88) and (89) together we obtain the condition
on coefficients ca,j(

ca,j

pj − qj

)2∏
k �=j

(pj − pk)(qj − qk)

(pj − qk)(qj − pk)
=
(

pj

qj

)1−2a
pj − P

qj − P
. (92)

10 A similar trick was used by Matsuno [19] to prove the reality of a multi-phase solution for the conventional
Benjamin–Ono equation.
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Condition (92) is necessary to turn a general solution of MKP1 into a solution of 2BO. We
can check that the determinant formulae (79) with (92) satisfy the reality condition (55) with
normalization constant

A = P

N∏
j=1

qj

pj

. (93)

We also have to find a condition that guarantees that τ1 has no zeros inside the unit
disk. Before turning to this analysis, we first discuss degeneration of formulae (79) into a
multi-soliton solution.

7.2.2. Multi-soliton solution of 2BO. The multi-soliton solution of 2BO follows from the
multi-phase solution in the limit pj → qj . We introduce

kj = pj − qj , (94)

vj = 1
2 (pj + qj ) + K + v0 (95)

and consider the limit kj → 0 keeping vj fixed. After some straightforward calculations we
obtain

τa = eiηa det

[
δjk(x − x0j − vj t + iAa,j ) + ig

1 − δjk

vj − vk

]
, (96)

Aa,j = g

2

(
1

vj − v0 + K
± 1

vj − v0 − K

)
, a = 0, 1. (97)

One notes that in the limit t → +∞ the solution (96) asymptotically goes to the factorized
form

τa → eiθa

∏
j

(x − x0j − vj t + iAa,j ), (98)

describing separated single solitons.
Equation (98) gives a large time value of zeros of τ1. Their imaginary part is

−Re A1,j = g
K

(vj − v0)2 − K2
. (99)

It must be negative in order for τ1 to have no zeros inside the unit disk. Since K < 0 we must
require

(vj − v0)
2 > K2. (100)

Using K = −πgρ0 we rewrite (100) as a condition on soliton velocities

vj < v0 − πgρ0 or vj > v0 + πgρ0. (101)

We stress here that the multi-soliton solution (96) is not chiral. Some of the soliton velocities
can be negative (left inequality in (101)) while the rest might have positive velocities according
to the right inequality in (101). In the following paragraph, we argue that under condition
(101) and additional restrictions on parameters pj , qj (see equation (113) below) the moving
zeros never cross the real axis, and therefore zeros stay outside of the unit disk at all times11.

11 In quantum problem the condition similar to (101) has a very straightforward interpretation: momenta of
quasiparticles lie outside of the filled Fermi sea. Solitons in classical problem represent quasiparticles of the
quantum model while quantum quasiholes become sound waves at the classical level [30].
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To conclude this section we note a unique property of the 2BO equation (shared with the
BO equation). Namely, there is a ‘quantization’ of the mass of solitons: each soliton of 2BO
carries a unit of mass regardless of its velocity. We have for N-soliton solution∫

dx(ρ − ρ0) = N. (102)

The total momentum and the total energy of a multi-soliton solution are given by∫
dx(ρv − ρ0v0) =

∑
j

vj , (103)

∫
dx

(
ρv2

2
+ ρε(ρ) − ρ0v

2
0

2
− ρ0ε(ρ0)

)
=
∑

j

v2
j

2
, (104)

where ε(ρ) is defined in (37).
One-soliton solution has the form

ρ = ρ0 +
1

π

A1

ξ 2 + A2
1

, v = v0 + g
A0

ξ 2 + A2
0

, (105)

where

ξ = x − x01 − v1t (106)

and

A1 = Re A1,1 = πg2ρ0

(v1 − v0)2 − (πgρ0)2
,

A0 = Re A0,1 = g(v1 − v0)

(v1 − v0)2 − (πgρ0)2
.

(107)

This one-soliton solution has been found first in [7] (see also [24]). The one-soliton solution
(105) and (107) is written in terms of u-fields as

u0(x) = v0 +
ig

ξ + iA0
, (108)

u±1(x) = ∓πgρ0 − ig

ξ ± iA1
, (109)

where u±1(x) = u1(x ± i0). It also has a simple one-pole form in terms of the field (41)

 = √
ρ0

ξ − iA0

ξ + iA1
e

i
g
(v0+πgρ0)ξ e− i

2g
(v0+πgρ0)

2t
. (110)

7.2.3. Analyticity condition. Now we can turn to the multi-phase solution and derive
conditions sufficient in order for u1 to be analytic in the upper half-plane in the complex
x-variable (inside the unit disk). Analyticity in the lower half-plane follows from the Schwarz
reflection condition (54). We will follow the approach of Dobrokhotov and Krichever [25]
developed for the Benjamin–Ono equation.

Analyticity of u1 means that τ1 given by (79) has no zeros in the upper half-plane, or that
the matrix

Mjk = δjk +
c1,j eiθj

pj − qk

(111)
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is non-degenerate. Following the approach of [25] we derived in appendix E a sufficient
condition of non-degeneracy of the matrix M from (111). Let us now write conditions (E.10)
and (E.9) with cj defined by (E.1) and (92). We obtain (calculating fj )

P

pj (qj − P)

∏
k(k �=j)

pj − qk

pj − pk

same sign for all j, (112)

with P from (90).
The set of conditions

q1 < p1 < · · · < qm < pm < 0 < P < qm+1 < pm+1 < · · · < qN < pN (113)

satisfies (112). Moreover, (113) yields to (100), which in its turn means that at least at some
values of parameters (large time and soliton limit) no zeros of τ1 are inside the unit disk. Since
they also cannot be on the circle they do not cross it while moving in time and in the space of
parameters.

Condition (113) suggests that a general solution is characterized by a integer number
N − 2m. This is chirality—the difference between the number of N − m right and m—left
moving modes

1

2πg

∫
(JR − v0 − πgρ0) dx = N − m, (114)

1

2πg

∫
(JL − v0 + πgρ0) dx = m. (115)

Equations (79)–(83), (92) and (113) summarize a general finite dimensional quasiperiodic
solution. We emphasize here that this solution is not chiral and contains both right- and
left-moving modes.

7.3. Multi-phase solution of the chiral non-linear equation

The (right) chiral case appears when τ0 has no zeros outside the unit disk. It naturally happens
when the number of, say, left-moving modes m in (113) vanishes m = 0. In this case, all
vj − v0 < 0. In their turn, imaginary parts of zeros of τ0 in the multi-soliton limit (as in (99))

−A0j = −g
vj − v0

(vj − v0)2 − K2
> 0 (116)

are positive. One can check that in this case (111) with c1,j → c0,j is non-degenerate for
arbitrary values of parameters satisfying (113) with m = 0 (and similarly for m = N ).
Therefore, τ0(x) is non-zero in one of the half-planes.

This is a chiral multi-phase solution of 2BO.

7.4. Multi-phase solution of the Benjamin–Ono equation

The known solutions of the Benjamin–Ono equation [21, 22] are obtained from the solutions
of the chiral nonlinear equation by taking the limit ρ0 → ∞. In this case, K → −∞ and
conditions (113) allow for a good limit only if m = N (left sector) or m = 0 (right sector).
Let us concentrate on, e.g., the left sector. We choose v0 = −K and obtain from (113) and
(92) in the limit K → −∞

q1 < p1 < q2 < · · · < qN < pN < 0, (117)
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ca,j

pj − qj

)2∏
k �=j

(pj − pk)(qj − qk)

(pj − qk)(qj − pk)
=
(

pj

qj

)1−2a

(118)

with solution given by (79) and (81) and with (82) and (83) (one should put K = 0 in latter
two). This is nothing but the multi-phase solution of the conventional Benjamin–Ono equation
[19, 22].

7.5. Moving poles

The 2BO equation (14) looks very similar to the classical BO equation. One of the important
tools in studying the classical BO equation is the so-called pole ansatz—solutions in the form
of poles moving in a complex plane [21]. We have already seen that the pole ansatz (8) and
(9) describes the dynamics of the original Calogero–Sutherland model with finite number of
particles N.

In this section, we consider collective excitations of the Calogero–Sutherland model in
the limit of infinitely many particles. These excitations are given by ‘complex’ pole solutions
of the 2BO.

In the pole ansatz (8) and (9), the reality conditions were satisfied by requiring xj to be
real (or wj(t) moving on a unit circle). One could generalize the pole ansatz (8) and (9) to
case where wj(t) are away from the unit circle and moving in a complex plane. Equations (6)
and (7) describing the motion of poles preserve their form. However, u−1(w) outside of the
unit circle is not related to u1(w) inside of the circle by analytic continuation but only by
Schwarz reflection (10). The field u1(w) is analytic inside the unit circle and has moving
poles outside of the unit circle (and vice versa for u−1(w)). Of course, having obtained the
solution of 2BO inside the unit circle does not mean automatically that the Schwarz reflected
function (10) will solve 2BO in the exterior of the circle with the same u0. The property (10)
requires that (6) and (7) be satisfied not only by uj and wj but also by uj and 1/w̄j . This
requirement will significantly constrain the positions of poles wj and uj in a complex plane.
It turns out that this constraint allows for non-trivial solutions.

We emphasize here once again that while real axis poles xj of u1 in the pole ansatz
represent the original CS particles, the complex poles xj represent collective excitations of the
CS liquid moving in the background of macroscopic number of particles.

Instead of looking for a moving pole solution in this section, we have taken a different
route. We first construct the much more general solution of 2BO (14) with proper reality
conditions and then obtain a moving pole (i.e., multi-soliton) solution as a limit of the
multi-phase solution. One can see from (96) that for soliton solutions the zeros of tau-
functions move in a complex plane. It is especially clear at large times when solitons are well
separated (98).

8. Conclusion and discussion

In this paper, we have shown that the dynamics of the classical Calogero–Sutherland model
in the limit of an infinite number of particles is equivalent to the bidirectional Benjamin–Ono
equation (14). The bidirectional Benjamin–Ono equation (2BO) is an integrable classical
integro-differential equation. Its integrability can be deduced from the fact that it is a
Hamiltonian reduction of MKP1 as it is shown in this paper. As an alternative, one can
use the equivalence of 2BO to INLS (40). The integrability of INLS was proven and the
spectral transform was constructed for INLS in [26] (see also [20]). Therefore, one can use
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all techniques developed in the field of classical integrable equations for 2BO. It has multi-
phase solutions (explicitly constructed in this paper), bi-Hamiltonian structure, an associated
hierarchy of higher order equations, etc. 2BO is intrinsically simpler than many other classical
integrable models. Its solitons have ‘quantized’ area independent of soliton’s velocity. The
collision of two solitons goes without any time delay, etc. This is a reflection of the fact that
the underlying Calogero–Sutherland model is essentially a model of non-interacting particles
in disguise. In particular, 2BO supports a phenomenon of dispersive shock waves. Some
applications of this phenomenon to the quasi-classical description of quantum systems were
considered in [16].

Most of the results of this paper can be generalized along two avenues: generalization to
an elliptic case and generalization to a quantum model.

The Calogero–Sutherland model (trigonometric case) can be generalized to an elliptic
case—an elliptic Calogero model where the interaction between particles is a Weierstrass
℘(x|ω1, ω2) function with purely real and purely imaginary periods ω1, iω2, and to
its hyperbolic degeneration (hyperbolic case) with inter-particle interaction given by
sinh−2(x/ω2) (see [3] for review).

In both cases most of the formulae remain unchanged if one substitutes the Hilbert
transform f H for a transform with respect to a strip 0 < Im x < ω, where ω is an imaginary
period:

f H =
∫

ζ(x − x ′)f (x ′) dx ′ or
∫

1

ω2
coth

1

ω2
(x − x ′)f (x ′) dx ′. (119)

In the first case the integration goes over a real period of the Weierstrass ζ -function.
The elliptic Calogero model allows one to study a crossover between liquids with long-

range inter-particle interaction to liquids with short-range interaction. In the limit of a large
imaginary period ω2 → ∞, the ℘-function degenerates to 1/ sin(x/ω1)

2 —the case of long-
range inter-particle interaction. The opposite limit ω2 → 0 gives rise to a short-range
interaction: ω2℘(x) → δ(x).

In the latter case, the Hilbert transform (119) becomes a derivative f H → ω∂xf and the
equations discussed in this paper become local. In particular, the Benjamin–Ono equation
flows to the KdV equation, while the bidirectional BO equation flows to NLS—the nonlinear
Schrödinger equation.

2BO in the limit of small amplitudes and in the chiral sector becomes the conventional
Benjamin–Ono equation. In elliptic case (and in the hyperbolic one) the limit of small
amplitudes in the chiral sector leads to a generalization of the Benjamin–Ono equation, known
as the ILW (intermediate long wave) equation [8]. Contrary to the Benjamin–Ono equation
and to 2BO, the latter and its bidirectional generalization 2ILW have elliptic solutions.

We intend to address the elliptic case in a separate publication.
Probably, even more interesting is a generalization of the results of this paper to the

quantum case. It is well known that the classical CSM model (1) can be lifted to a quantum
integrable Calogero–Sutherland model [1, 2, 28]. The latter model is defined by (1) with
g2 → h̄2λ(λ − 1) and pi = −ih̄∂xi

. The 2BO equation in the form (14) remains unchanged,
except for the change of the coefficient g → λ − 1 and for the change of Poisson brackets
(47) by a commutator: {, } → i

h̄
[, ]. The change g → λ − 1 valid for equation (14) is not

correct for all formulae. For example, the bilinear form of classical 2BO (49) is identical to
its quantum version with just a change of notations g → λ. For some details see [4]. The
multi-soliton solution of 2BO presented here corresponds to exact quasiparticle excitations
of the quantum Calogero–Sutherland model [7, 30]. A more detailed study of the relations
between integrable structures of the classical 2BO and its quantum analog is necessary.

19



J. Phys. A: Math. Theor. 42 (2009) 135201 A G Abanov et al

Acknowledgments

AGA is grateful to A Polychronakos for the discussion of the chiral case. PW thanks J
Shiraishi for discussions. The work of AGA was supported by the NSF under the grant no
DMR-0348358. EB was supported by ISF grant no 206/07. PW was supported by NSF under
the grant nos NSF DMR-0540811/FAS 5-27837 and MRSEC DMR-0213745. We also thank
the Galileo Galilei Institute for Theoretical Physics for the hospitality and the INFN for partial
support during the completion of this work.

Appendix A. Hilbert transforms

Given a function f (x), f (x) → 0 as x → ±∞, the Hilbert transform is defined as

f H (x) = 1

π
−
∫ +∞

−∞
dy

f (y)

y − x
. (A.1)

For periodic functions with period L we define the transform as

f H (x) = −
∫ L

0

dy

L
f (y) cot

π

L
(y − x). (A.2)

The Hilbert transform of the constant function is zero. The Hilbert transform is inverse to
itself H 2 = −1 or (f H )H = −f and it commutes with derivative (f H )x = (fx)

H . More
generally, a function f (x) defined on the closed (directed) contour C surrounded the origin of
a complex plane can be decomposed into a sum f = f + + f −, analytic functions f ± inside
(outside) of the contour, such that f +(0) = f −(∞). Then

f H ≡ P

∮
dζ

2πζ
f (ζ )

ζ + w

ζ − w
= i(f + − f −). (A.3)

Using (A.3) it is easy to derive the following properties:

f Hg + fgH = (fg)H − (f HgH )H (A.4)

and some integration formulae∫
dx f H = 0, (A.5)

∫
dx f Hg = −

∫
dx fgH , (A.6)

∫
dx f Hf = 0. (A.7)

From (A.3) we have for functions analytic in one of the half-planes

(f ±)H = ±if ± (A.8)

and as an immediate consequence

(eikx)H = i eikx sgn k, (A.9)(
1

x − a

)H

= i

x − a
, for Im a > 0. (A.10)

Generally, in Fourier space the Hilbert transform is equivalent to a multiplication by i sgn k,
i.e., for Fourier coefficients

(f H )k = i(sgn k)fk. (A.11)
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It is easy to derive the following useful identities:∫
u2 dx =

∫
(uH )2 dx, (A.12)

∫
u3 dx = 3

∫
u(uH )2 dx, (A.13)

∫
u4 dx =

∫
[(uH )4 + 6u2(uH )2] dx, (A.14)

∫
u5 dx = 5

∫
[u(uH )4 − 2u3(uH )2] dx. (A.15)

Appendix B. Conserved integrals of 2BO

In this section, we present the conserved integrals of 2BO written in different forms. The
contour integrals below are taken along the contour C defined in figure 1:

I1 =
∮

dx

2πg
u =

∫
dx ρ =

∫
dx

2π
i∂x log

τ1

τ−1
, (B.1)

I2 =
∮

dx

2πg

1

2
u2 =

∮
dx

2πg
u1u0 =

∫
dx ρv

= g

2

∫
dx

2π

[
D2

xτ−1 · τ0

τ−1τ0
− D2

xτ1 · τ0

τ1τ0

]
= i∂t

∫
dx

2π
log

τ1

τ−1
, (B.2)

I3 =
∮

dx

2πg

[
1

3
u3 + i

g

2
u∂xũ

]

=
∮

dx

2πg

[
u1

2u0 + u1u0
2 + igu1∂u0

] =
∫

dx

[
ρv2

2
+ ρε(ρ)

]
. (B.3)

Higher integrals of motion for 2BO can be constructed recurrently similarly to the Benjamin–
Ono equation [27] or can be written using the integrals obtained for INLS [20, 26].

Appendix C. Geometrical interpretation of the chiral equation: contour dynamics

Equation (66) can be cast in the form of contour dynamics.
Let us interpret the unit disk as a uniformization of a simply connected domain embedded

into the complex z-plane. In other words, z(w) is a conformal map of the interior of the unit
disk |w| = 1 to a bounded domain such that the length element of its boundary is proportional
to the density

ds ≡ |z′(x)| dx = πρ(x) dx. (C.1)

(Equivalently 1/
√

ρ is a harmonic measure of the contour.) Then equation (66) describes the
evolution of the planar domain. We note that the curvature of the boundary κ = −i∂s log zs

can be expressed in terms of the density ρ(x) as

κ = −(πρ)−1(∂x(log
√

ρ)H − 1). (C.2)
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Then (66) can be written as

ds

dt
= g

(
ds

dx

)2

(1 − κ), (C.3)

where d/dt = ∂t −gπρ0∂x and the time derivative is taken at fixed x. Equation (C.3) describes
the evolution of a planar contour driven by its curvature.

Appendix D. Determinant identity

Here we present a derivation of a determinant identity (D.7) which was used in section 7.2.
Consider the Cauchy matrix

Dij = risj

pi − qj

, pi �= qj , i, j = 1, 2, . . . , N. (D.1)

Its determinant

det(D) =
∏

i

ri

∏
i<j (pi − pj )(qj − qi)∏

i,j (xi − yj )

∏
j

sj =
(∏

i

risi r̃i s̃i

)− 1
2

, (D.2)

where r̃i and s̃i are defined by

r̃i ri = (pi − qi)
∏

k(k �=i)

pi − qk

pi − pk

, (D.3)

s̃i si = −(qi − pi)
∏

k(k �=i)

qi − pk

qi − qk

. (D.4)

The inverse of D is also a Cauchy matrix (see, e.g., [29]) given by

(D−1)ij = r̃j s̃i

pj − qi

. (D.5)

The obvious identity

det(1 + D) = det(D) det(1 + (DT )−1) (D.6)

being specialized for Cauchy matrix D (D.1) reads

det
(
δij + ri sj

pi−qj

)
(∏

i risi

)1/2 =
det
(
δij + r̃i s̃j

pi−qj

)
(∏

i r̃i s̃i

)1/2 . (D.7)

Appendix E. Non-degeneracy condition of matrix (111)

In this section, we will derive the non-degeneracy condition for the matrix (111) following
[25].

Let us introduce

cj = c1,j exp

{
i

g

[
(qj − pj )x − q2

j − p2
j

2
t

]}
. (E.1)

Our aim is to derive a sufficient condition on coefficients cj for the matrix

Mjk = δjk +
cj

pj − qk

(E.2)

to be non-degenerate for real pj and qj .
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Let us assume that the matrix (E.2) is degenerate. It means that the following equation
has a non-zero solution:

rj +
∑

k

cj

pj − qk

rk = 0. (E.3)

We introduce the meromorphic function

ψ(z) =
∑

k

rk

z − qk

(E.4)

and rewrite the condition (E.3) as

rj = resz=qj
ψ(z) = −cjψ(pj ). (E.5)

Now, let us consider the function

f (z) = ψ(z)ψ(z̄)
∏
j

z − qj

z − pj

. (E.6)

Here explicitly

ψ(z̄) =
∑

k

r̄k

z − qk

. (E.7)

The function f (z) is meromorphic and its residue at infinity is zero (as ψ(z) ∼ z−1 as z → ∞).
On the other hand (pj and qj are real numbers)

resz=pj
f + resz=qj

f = ψ(pj )ψ(pj )(pj − qj )
∏

k(k �=j)

pj − qk

pj − pk

+ rj r̄j

1

qj − pj

∏
k(k �=j)

qj − qk

qj − pk

= |rj |2
|cj |2 fj , (E.8)

where we introduced the notation

fj = (pj − qj )
∏

k(k �=j)

pj − qk

pj − pk

⎡
⎣1 − |cj |2

(pj − qj )2

∏
k(k �=j)

(pj − pk)(qj − qk)

(pj − qk)(qj − pk)

⎤
⎦ . (E.9)

If fj has the same sign for all j , e.g., fj < 0 we immediately obtain∑
j

(resz=pj
f + resz=qj

f ) < 0.

This is impossible as the residue of f (z) at infinity is zero. This contradiction shows that the
matrix (E.2) is non-degenerate under these conditions.

To summarize, the sufficient condition of non-degeneracy of (E.2) is

fj < 0 for all j or fj > 0 for all j, (E.10)

where fj are defined according to (E.9).
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